import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run function_proposed_gcn.py
with open('fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= try_1(fraudTrain, 0.3, 0.05, 8.028000e+04, 0.3) df_results
= try_1(fraudTrain, 0.3, 0.05, 8.028000e+04, 0.2, prev_results=df_results) df_results
= try_1(fraudTrain, 0.3, 0.005, 8.028000e+04, 0.2, prev_results=df_results) df_results
= try_1(fraudTrain, 0.2, 0.05, 8.028000e+04, 0.2, prev_results=df_results) df_results
= try_1(fraudTrain, 0.2, 0.005, 8.028000e+04, 0.2, prev_results=df_results) df_results
= try_1(fraudTrain, 0.3, 0.005, 8.028000e+04, 0.3, prev_results=df_results) df_results
= try_1(fraudTrain, 0.5, 0.5, 8.028000e+04, 0.3, prev_results=df_results) df_results
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.972028 | 0.652778 | 0.940000 | 0.770492 | 0.956856 | True | Proposed | 0.3 | 20020 | [level_0, trans_date_trans_time, cc_num, merch... | 0.3 | 20020 | 0.050 | None | 80280.0 | 0.3 |
1 | GCN | None | 0.972194 | 0.650794 | 0.956667 | 0.774629 | 0.964839 | True | Proposed | 0.3 | 20020 | [level_0, trans_date_trans_time, cc_num, merch... | 0.3 | 20020 | 0.050 | None | 80280.0 | 0.2 |
2 | GCN | None | 0.972694 | 0.143617 | 0.900000 | 0.247706 | 0.936529 | True | Proposed | 0.3 | 20020 | [level_0, trans_date_trans_time, cc_num, merch... | 0.3 | 20020 | 0.005 | None | 80280.0 | 0.2 |
3 | GCN | None | 0.977356 | 0.711340 | 0.920000 | 0.802326 | 0.950186 | True | Proposed | 0.2 | 30030 | [level_0, trans_date_trans_time, cc_num, merch... | 0.2 | 30030 | 0.050 | None | 80280.0 | 0.2 |
4 | GCN | None | 0.978910 | 0.171946 | 0.844444 | 0.285714 | 0.912015 | True | Proposed | 0.2 | 30030 | [level_0, trans_date_trans_time, cc_num, merch... | 0.2 | 30030 | 0.005 | None | 80280.0 | 0.2 |
5 | GCN | None | 0.971029 | 0.136364 | 0.900000 | 0.236842 | 0.935693 | True | Proposed | 0.3 | 20020 | [level_0, trans_date_trans_time, cc_num, merch... | 0.3 | 20020 | 0.005 | None | 80280.0 | 0.3 |
6 | GCN | None | 0.964752 | 0.969697 | 0.959467 | 0.964555 | 0.964750 | True | Proposed | 0.5 | 12012 | [level_0, trans_date_trans_time, cc_num, merch... | 0.5 | 12012 | 0.500 | None | 80280.0 | 0.3 |
train_cols 수정 필요 ->
amt
만 나오게. ..time……..(proposed는 시간이 의미가 있낭?)
일단 이렇게 나온 결과값을 엑셀로 저장해야함..
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(